映月读书网 > 时间的形状 > 神奇的四维 >

神奇的四维

本章的内容就像是一首古典交响乐,由平静的序曲开始,逐渐进入主题,然后达到高潮。现在本章的高潮已经来临,让我们一同来继续领略四维时空的奇景。

我们每个人都已经习惯了三维世界,所有的物体都有长、宽、高的基本属性,我们也很容易知道二维平面的图景,一幅画就是二维的,而一根线就是一维的。可是我们却怎么也想象不出来四维的物体长什么样,有什么特性。一个三维空间的正方体,我们很容易想象出它的样子,可是一个四维的正方体,我们称之为超正方体,或者一个超圆锥体、超圆柱体、超金字塔,你能想象出它们的样子吗?这似乎已经开始挑战我们的想象力极限了,但是不要怕,让我帮助你一步步地把四维物体的形象建立起来,我们从研究超正方体开始这段思维之旅。

在想象超正方体的形象之前,让我们先来研究一下维度之间的关系,每多一个维度意味着什么?会带来哪些变化呢?

让我们先从一维的世界开始。如果这个世界是一维的话,那么这个世界的生物都是一根线段,只有长度,没有高度和宽度。它们的头尾各有一个眼睛,它们可以在x轴方向左右移动,但是永远也无法超越前面的人,要与隔着的一个“人”打声招呼都是不可能的,更不要说与别的同伴见面,他们只能通过与其相邻的“人”传话过去。一维生物的交流就永远只能是报数,一个挨一个地报过去。

【图8-11】一维世界中万物都是一根线段

这个一维世界是一个狭窄得让人窒息的世界,在这个世界中自然不可能有任何形状的概念,一切都是线段。那么如果突然有一天,一根一维的线段获得了朝另外一个维度,也就是y轴方向运动的能力,那么它的运动轨迹会变成什么呢?让我们画个图来研究一下:

【图8-12】一根一维的线段朝y轴方向运动一段距离后,轨迹形成一个正方形

一维线段只有2个顶点1条边,它在二维方向运动一段距离后,2个顶点就多了一倍,变成了4个。我们把2个顶点运动前后的位置用线连起来,于是我们看到轨迹就形成了一个正方形,这个正方形有4个顶点4条边。一旦从一维的世界拓展到了二维的世界,整个天地豁然开朗,世界从一根只有长度没有高度的“线”突然变成了一幅“画”。在这个二维世界中,“人”可以任意游走和穿行其间,可以跨过相邻的同伴直接与别的同伴见面。如果一维生物有感知的话,它们会被眼前的奇景所震撼,做梦也想不到居然可以有如此宽广的天地,天地开阔了岂止两倍,并且这个二维世界中的物体再也不是只有长度区别的一根线段了,他们可以拥有如此复杂多变的形状,形状之多简直就是无穷无尽的。一个一维诗人在看到了二维世界的奇观后,带着他奇特的口音由衷地吟出这样的“诗句”:嘛叫宽广,界(这)就叫宽广。

然后,突然有一天,一个二维的正方形获得了在另外一个维度,也就是z轴运动的能力,那么它的运动轨迹又会变成什么样?让我们画出图来看一下:

【图8-13】二维正方形朝第三个维度运动后形成正方体

我们看到,一个二维的正方形在三维方向运动一段距离后,原来的4个顶点翻了一倍,在新的位置又形成了4个顶点。于是我们还是用老方法,把顶点在运动前后的位置连起来,于是形成了8个顶点和12条边(正方形本来有4条边,运动后在新位置又有4条边,然后定点连线再形成4条边,加起来刚好是12条边)的一个正方体。这个世界从二维的“画”变成了三维的空间,天地开阔了岂止百倍。如果生活在“画”上的二维生物突然来到了这个三维世界,再回看自己曾经生活过的二维世界的话,你觉得它会怎么想。它必定会被眼前的景象惊呆:旧有的世界观一去不复返:原来我们以前那个世界是如此狭窄得令人窒息啊;原来我们认为的牢不可破的监狱根本无法关住犯人,一个犯人如果跟我现在一样能在第三维运动,只要轻轻一跨,就在看守们做梦也想不到的地方越狱了;原来我们以前那个二维世界的保险箱是如此的不保险,从我现在三维的角度看过去,一切都不再是保密的,保险箱内的东西全都一览无余,可以轻易取出来。眼前的这个三维世界实在宏大得不可思议,万物不仅仅只有形状,还有体积,无穷无尽的形体变化除了用“难以置信”去形容,实在找不出第二个恰当的词了。

霍金在《果壳中的宇宙》一书中风趣地说二维生物和三维生物的区别在于,二维生物想要消化食物会非常困难,因为如果它们的嘴到肛门是被一根肠子联通的话,那么他们必然会被一分为二。其实别说肠子了,二维生物的血管会把它们分割成无数的小块,彼此不相连。

下面是重点来了,各位读者务必打起精神。

如果,突然有一天,一个三维的正方体获得了朝第四个维度运动的能力,那么它的运动轨迹会形成一个什么样的形状呢?虽然我们暂时无法在头脑中想象出来,但是根据之前的维度增加的经验,我们至少可以推断出,这个四维的超正方体必然有16个顶点(原位置8个顶点,运动后在新位置产生8个顶点),然后有几条边呢?在原位置有12条边,新位置又有12条边,然后把8个新老顶点连接起来又产生8条边,因此,这个超正方体就会有32(12+12+8)条边。这样我们就得出结论:超正方体有16个顶点32条边。我们至少可以画出它在三维空间中的近似图,或者认为这是它在三维空间中的投影:

【图8-14】超正方体的三维投影

看,这就是超正方体在三维空间的投影。哦,可能有些读者对投影的概念不是很理解,那么我画一个正方体在二维平面的投影图出来,你马上就理解了,这也会帮助你想象超正方体的真正形态:

【图8-15】正方体在二维平面的投影

从上面这幅图中,我们可以看到,物体的投影虽然并不是物体的真正形态,但是它能准确地体现出该物体的基本特征。请把两张图结合起来,然后,闭上眼睛,努力在脑中冥想一下,过一会儿告诉我你想到的四维超正方体的真正形态是什么样子的。

过了一分钟,你睁开眼睛,然后茫然地告诉我:“大哥,很抱歉,还是没想出来!”

嗯,不奇怪,我料到了,这玩意儿确实不是太容易想。还好我留了一招后手,让我来继续帮助你做这个思维体操。下面我们来看看,如果你把一个三维正方体在二维平面上展开,会得到一个什么样的形状呢?换句话说,其实就是把一个纸板箱展开全部平铺在地面上,会是一个什么样子呢?我们画出图来看一下:

【图8-16】正方体在二维平面展开的样子

一个正方体总共有6个面,注意看正方体的二维投影也是6个面,这个基本特征是相当准确的。把6个面展开,就得到了上图所示的样子,其实就是一个纸盒子剪开压平的样子。那么,你能不能画出超正方体在三维空间展开后的样子呢?三维到二维展开的关键是研究总共有多少个“面”,那么将四维在三维展开的关键就是研究总共有多少个“体”,我们从超正方体在三维空间的投影可以数出来,总共是8个“体”,这个基本特征是准确无误的,所以,超正方体在三维空间展开后的应该是这样的:

【图8-17】超正方体在三维空间展开后的形态

现在,我要你再次闭上眼睛,把超正方体在三维空间的投影和展开图都在脑子里面过一遍,然后努力想象一下超正方体的真正形态,你能想象得出来吗?

这次过了整整五分钟,你睁开眼睛,还是一脸茫然地告诉我:“大哥,还是想象不出啊!”

别难过,其实我跟你一样,也想象不出来。这种状况,就跟三维世界中的我们去跟一个二维世界的人讲解什么是正方体一样。在二维世界中,只有正方形,没有正方体,你费尽口舌,举了无数例子,从三维正方体在二维上的投影讲到三维正方体在二维平面上的展开,然后再画出正方体在二维平面上的投影以及展开图,希望通过类比的方法让二维人想象出正方体的真正形态,口水都讲干了,可是,二维人仍然茫然地看着你,摇摇头说:“大哥,还是想象不出来。”其实,在对超正方体的想象力上,我们比那个可怜的二维人好不了多少。当一个二维人有一天终于能看到三维的世界后,他的震惊该是多么巨大,他除了不停地重复“难以置信”这个词以外,实在找不出其他恰当的形容词了。

其实我们人人都生活在四维时空中,从理论上说,我们每时每刻都在时间这个第四维上运动。但问题是,时间这个维度是单方向的,因此我们无法回头看见过去的自己,从而也无法感受到四维空间之大。但是,难道就不能有第四个空间维度存在吗?时间可以看成是第五维,四维时空变成了五维时空。如果真有第四个真正可以正反两个方向运动的空间维度,那么我们三维人是真的有可能跨出我们这个世界的“画”,从第四个空间维度俯瞰我们这个世界,请想象一下我们将面对的将是怎样一番令人难以置信的奇景呢?

天地之大,你该如何用语言去形容四维空间的宽广呢?我真的是无法形容出来,但是好在有比我高得多的高手,刘慈欣先生在他的《三体3·死神永生》中对四维空间的奇景有着惟妙惟肖的描述,其逼真感和现场感令人叹为观止,如果你有兴趣想对四维空间有进一步的认识,不妨读读此书。

如果真有第四个空间维度,那么为什么就不能有第五个、第六个,以至于无穷多个空间维度呢?发出同样诘问的人不仅仅是我,也有全世界许多著名的物理学家,恰恰是这个诘问引领现代物理学家,打开了基础理论物理研究的一个全新领域。按照目前最新的理论,我们这个宇宙在诞生的时候总共有十个维度,其中有九个空间维度,一个时间维度。经过百亿年的演化,现在六个空间维度已经蜷缩在了微观世界中。关于这个话题,我们在本书的最后一章还要再次讨论,那又将是一段充满挑战的思维之旅。

好了,关于时空的旅程到此就正式结束了,结束这段时空之旅的同时,我们关于相对论本身是什么的话题也就全部讲完了,我希望这十多万字阅读下来,你终于对相对论有了一个基本的认识,不再觉得相对论很神秘,很难懂了。

但是,相对论结束了,物理学并没有结束,我们的书也还没有结束,因为,好戏还在后头。最后两幕大戏上演之前,我必须先来带你认识一下爱因斯坦的世界观、宇宙观。爱因斯坦对这个宇宙的认识有“一个中心,两个基本点”,先说两个基本点。

第一,爱因斯坦认为这个宇宙是“定域”的。这个概念我们在本章前面刚刚讲到过,也就是说一个事件的将来光锥决定了这个事件对时空的影响范围,而它的过去光锥决定了什么样的时空范围可以影响到这个事件本身。过去光锥和将来光锥都是有大小和形状的,也就是说这个宇宙是一个定域的宇宙,任何事件之间都不可能超越这个范围而相互影响。

第二,爱因斯坦认为这个宇宙是“实在”(客观存在)的。宇宙万物的运动规律独立于观察者而存在,不论是否有人的存在,皓月星辰、茫茫星海,它们的运动是一个客观存在。不管是在人类诞生之前,还是人类灭亡之后,宇宙仍然是在按照它自身的发展规律一丝不苟地演化,用宇宙自己的话说就是“我膨胀也好收缩也好,与人类何干”。

围绕着这两个基本点,爱因斯坦还有一个中心思想,那就是“因果律”,宇宙万物有果必有因,有因必有果。宇宙从大爆炸开始的那天起,就在朝着确定无疑的方向演化,不管我们知道也好不知道也好,宇宙的未来早已经就是一本写好的剧本,宇宙必然会按照剧本的要求丝毫不错地演化下去。

爱因斯坦虽然用相对论改写了牛顿物理学,但是在因果律这个基本宇宙观上,爱因斯坦和牛顿是一模一样的。牛顿认为,如果我们能够知道某一时刻宇宙中所有物体的运动状态,那么只要拥有足够强大的计算能力,我就可以确定无疑地计算出宇宙的过去和未来,分毫不差。爱因斯坦的名言是“宇宙最不可理解之处在于它是可解的”。爱因斯坦经常喜欢拿上帝来说事,还经常称呼上帝为“老头子”,但爱因斯坦实际上是一个彻底的无神论者,他口中的上帝其实指的是斯宾诺莎(西方近代哲学史上最著名的理性主义者,对西方科学思想影响深远)的“上帝”,那就是——宇宙规律本身。

爱因斯坦还有一句名言:“上帝不掷骰子!”这个宇宙万物的演化规律不是靠每次掷骰子得出的随机点数来决定的,“老头子”是一个一丝不苟的人,他过去从没有犯过错误,将来也不会犯错误,宇宙的剧本早已定稿。从这一点上来说,爱因斯坦和牛顿都是属于经典的,他们心中的宇宙是经典的宇宙,是一个温暖、有秩序、一丝不苟的宇宙,或许这也是我们大多数人心目中的宇宙。

然而,我们的宇宙真是爱因斯坦心目中那个温暖的宇宙吗?爱因斯坦心目中的上帝真是他希望的那个一丝不苟的上帝吗?伟大的相对论难道就没有一点破绽吗?自从20世纪以来,人类在研究微观世界时发现了一系列令人费解的实验结果,从此诞生了理论物理学另外一个重要的分支——量子物理学。爱因斯坦曾是量子物理学的奠基人之一,然而后期他自己又对量子物理学发出了一系列的诘难。他亲手设计了一个试图推翻量子物理学基本理论“哥本哈根解释”的思维实验,因为哥本哈根解释让上帝从一个温文尔雅的君子变成了一个疯狂的赌徒。这个著名的思维实验被称之为EPR实验,以爱因斯坦、波多尔斯基和罗森三个人名字的首字母命名。为什么只能在思维中进行呢,那是因为在当时,人类的技术水平还发展不到实验要求的精度。但是在爱因斯坦死后27年,也就是1982年,人类终于突破了技术难关,具备了把EPR实验从思维中搬到实验室的能力,于是,我们将看到人类对爱因斯坦的上帝进行了审判。“老头子”到底是一个和蔼慈祥的绅士还是一个捉摸不定的赌徒,答案将在下一章揭晓。